Azithromycin for COVID-19: More Than Just an Antimicrobial? (2024)

1. Beigel JH, Tomashek KM, Dodd LE, Mehta AK, Zingman BS, Kali AC, for the ACTT-1 Study Group Members et al. Remdesivir for the treatment of Covid-19: preliminary report. N Engl J Med. 2020 doi:10.1056/nejmoa2007764. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

2. Yao X, Ye F, Zhang M, Cui C, Huang B, Niu P, et al. In vitro antiviral activity and projection of optimized dosing design of hydroxychloroquine for the treatment of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Clin Infect Dis. 2020 doi:10.1093/cid/ciaa237. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

3. Ye Q, Wang B, Mao J. The pathogenesis and treatment of the ‘cytokinestorm’ inCOVID-19. J Infect. 2020;80:607–613. doi:10.1016/j.jinf.2020.03.037. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

4. Du X, Zuo X, Meng F, Wu F, Zhao X, Li C, et al. Combinatorial screening of a panel of FDA-approved drugs identifies several candidates with anti-Ebola activities. Biochem Biophys Res Commun. 2020;522:862–868. doi:10.1016/j.bbrc.2019.11.065. [PubMed] [CrossRef] [Google Scholar]

5. Retallack H, Di Lullo E, Arias C, Knopp KA, Laurie MT, Sandoval-Espinosa C, et al. Zika viruscell tropism in the developing human brain and inhibition by azithromycin. Proc Natl Acad Sci USA. 2016;113:14408–14413. doi:10.1073/pnas.1618029113. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

6. Wu YH, Tseng CK, Lin CK, Wei CK, Lee JC, Young KC. ICR suckling mouse model ofZikavirus infection for disease modeling and drug validation. PLoS Negl Trop Dis. 2018;12:e0006848. doi:10.1371/journal.pntd.0006848. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

7. Li C, Zu S, Deng YQ, Li D, Parvatiyar K, Quanquin N, et al. Azithromycin protects againstZikavirus infection by upregulating virus-induced type I and III interferon responses. Antimicrob Agents Chemother. 2019 doi:10.1128/aac.00394-19. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

8. Tran DH, Sugamata R, Hirose T, Suzuki S, Noguchi Y, Sugawara A, et al. Azithromycin, a 15-membered macrolide antibiotic, inhibits influenza (H1N1)pdm09virus infection by interfering withvirusinternalization process. J Antibiot (Tokyo). 2019;72:759–768. doi:10.1038/s41429-019-0204-x. [PubMed] [CrossRef] [Google Scholar]

9. Mosquera RA, De Jesus-Rojas W, Stark JM, Yadav A, Jon CK, Atkins CL, et al. Role of prophylactic azithromycin to reduce airway inflammation and mortality in a RSV mouse infection model. Pediatr Pulmonol. 2018;53:567–574. doi:10.1002/ppul.23956. [PubMed] [CrossRef] [Google Scholar]

10. Beigelman A, Isaacson-Schmid M, Sajol G, Baty J, Rodriguez OM, Leege E, et al. Randomized trial to evaluate azithromycin’s effects on serum and upper airway IL-8 levels and recurrent wheezing in infants with respiratory syncytial virus bronchiolitis. J Allergy Clin Immunol. 2015;135:1171–1178. doi:10.1016/j.jaci.2014.10.001. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

11. Andreani J, Le Bideau M, Duflot I, Jardot P, Rollanda C, Boxberger M, et al. In vitro testing of hydroxychloroquine and azithromycin on SARS-CoV-2 shows synergistic effect. Microb Pathog. 2020;25(145):104228. doi:10.1016/j.micpath.2020.104228. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

12. Zeng S, Meng X, Huang Q, Lei N, Zeng L, Jiang X, et al. Spiramycin and azithromycin, safe for administration to children, exert antiviral activity against enterovirus A71 in vitro and in vivo. Int J Antimicrob Agents. 2019;53:362–369. doi:10.1016/j.ijantimicag.2018.12.009. [PubMed] [CrossRef] [Google Scholar]

13. Gautret P, Lagier JC, Parola P, Hoang VT, Meddeb L, Mailhe M, et al. Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. Int J Antimicrob Agents. 2020 doi:10.1016/j.ijantimicag.2020.105949. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

14. Andreani J, Le Bideau M, Duflot I, Jardot P, Rollanda C, Boxberger M, Bou Khalil JY, Baudouin JP, Wurtz N, Rolain JM, Colson P, La Scola B, Raoult D. In vitro testing of hydroxychloroquine and azithromycin on SARS-CoV-2 shows synergistic effect. 2020. https://www.mediterranee-infection.com/wp-content/uploads/2020/03/Andreani-et-al.-Pre-print-V2.pdf. Accessed 27 May 2020. [PMC free article] [PubMed]

15. Schögler A, Kopf BS, Edwards MR, Johnston SL, Casaulta C, Kieninger E, et al. Novel antiviral properties of azithromycin in cystic fibrosis airway epithelial cells. Eur Respir J. 2015;45:428–39. doi:10.1183/09031936.00102014. [PubMed] [CrossRef] [Google Scholar]

16. Menzel M, Akbarshahi H, Bjermer L, Uller L. Azithromycininduces anti-viral effects in cultured bronchial epithelial cells from COPD patients. Sci Rep. 2016;6:28698. doi:10.1038/srep28698. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

17. Kawamura K, Ichikado K, Suga M, Yoshioka M. Efficacy of azithromycin for treatment of acute exacerbation of chronic fibrosing interstitial pneumonia: a prospective, open-label study with historical controls. Respiration. 2014;87:478–484. doi:10.1159/000358443. [PubMed] [CrossRef] [Google Scholar]

18. Bush A, Cunningham S, de Blic J, Barbato A, Clement A, Epaud R, on behalf of the chILD-EU Collaboration et al. European protocols for the diagnosis and initial treatment of interstitial lung disease in children. Thorax. 2015;70:1078–1084. doi:10.1136/thoraxjnl-2015-207349. [PubMed] [CrossRef] [Google Scholar]

19. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395:497–506. doi:10.1016/S0140-6736(20)30183-5. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

20. Chen G, Wu D, Guo W, Cao Y, Huang D, Wang H, et al. Clinical and immunological features of severe and moderatecoronavirusdisease 2019. J Clin Investig. 2020;130:2620–2629. doi:10.1172/JCI137244. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

21. McGonaglea D, Sharifa K, O’Regand A, Bridgewooda C. The role of cytokines including interleukin-6 in COVID-19 induced pneumonia and macrophage activation syndrome-like disease. Autoimmune Rev. 2020 doi:10.1016/j.autrev.2020.102537. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

22. Cai M, Bonella F, Dai H, Sarria R, Guzman J, Costabel U. Macrolides inhibit cytokine production by alveolar macrophages in bronchiolitis obliterans organizing pneumonia. Immunobiology. 2013;218:930–937. doi:10.1016/j.imbio.2012.10.014. [PubMed] [CrossRef] [Google Scholar]

23. Zarogoulidis P, Papanas N, Kioumis I, Chatzaki E, Maltezos E, Zarogoulidis K. Macrolides: from in vitro anti-inflammatory and immunomodulatory properties to clinical practice in respiratory diseases. Eur J Clin Pharmacol. 2012;68:479–503. doi:10.1007/s00228-011-1161-x. [PubMed] [CrossRef] [Google Scholar]

24. Silva JC, Mariz HA, Rocha LF, Jr, Oliveira PS, Dantas AT, Duarte AL, et al. Hydroxychloroquinedecreases Th17-related cytokines in systemic lupus erythematosus and rheumatoid arthritis patients. Clinics (Sao Paulo). 2013;68:766–771. doi:10.6061/clinics/2013(06)07. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

25. Durcan L, Petri M. Immunomodulators in SLE: clinical evidence and immunologic actions. J Autoimmun. 2016;74:73–84. doi:10.1016/j.jaut.2016.06.010. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

26. Shaw AC, Goldstein DR, Montgomery RR. Age-dependent dysregulation of innate immunity. Nat Rev Immunol. 2013;13:875–887. doi:10.1038/nri3547. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

27. Qin C, Zhou L, Hu Z, Zhang S, Yang S, Tao Y, et al. Dysregulation of immune response in patients with COVID-19 in Wuhan, China. Clin Infect Dis. 2020 doi:10.1093/cid/ciaa248. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

28. Landewe RB, Miltenburg AM, Verdonk MJ, Verweij CL, Breedveld FC, Daha MR, et al. Chloroquine inhibits T cell proliferation by interfering with IL-2 production and responsiveness. Clin Exp Immunol. 1995;102:144–151. doi:10.1111/j.1365-2249.1995.tb06648.x. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

29. Tomazic J, Kotnik V, Wabers B. In vivo administration of azithromycin affects lymphocyte activity in vitro. Antimicrob Agents Chemother. 1993;37:1786–1789. doi:10.1128/AAC.37.9.1786. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

30. Li CK, Wu H, Yan H, Ma S, Wang L, Zhang M, et al. T cell responses to whole SARS coronavirus in humans. J Immunol. 2008;181:5490–5500. doi:10.4049/jimmunol.181.8.5490. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

31. Chakrabort YS. Sequencing data (N = 3) shows Wuhan coronavirus integration in bacteria (Prevotella mostly). Sequencing artifact—or is the virus infecting both bacterial and human cells? 2020. 10.31219/osf.io/ktngw. Accessed 20 Apr 2020.

32. Chakraborty S. The Wuhan coronavirus has integrated in Prevotella, which possibly causes the observed extreme virulence—as sequencing data from 2 different studies in China and Hong-Kong shows unequivocally. 2020. 10.31219/osf.io/ktngw. Accessed 20 Apr 2020.

33. Chakraborty S. The 2019 Wuhan outbreak could be caused by the bacteria Prevotella, which is aided by the coronavirus—Prevotella is present (sometimes in huge amounts) in patients from two studies in China and one in Hong Kong. 2020. 10.31219/osf.io/usztn. Accessed 20 Apr 2020.

34. Marsland BJ, Gollwitzer ES. Host–microorganism interactions in lung diseases. Nat Rev Immunol. 2014;14:827–835. doi:10.1038/nri3769. [PubMed] [CrossRef] [Google Scholar]

35. Mirković B, Murray MA, Lavelle GM, Molloy K, Azim AA, Gunaratnam C, et al. The role of short-chain fatty acids, produced by anaerobic bacteria, in the cystic fibrosis airway. Am J Respir Crit Care Med. 2015;192:1314–1324. doi:10.1164/rccm.201505-0943OC. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

36. Molyneaux PL, Cox MJ, Willis-Owen SAG, et al. The role of bacteria in the pathogenesis and progression of idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 2014;190:906–913. doi:10.1164/rccm.201403-0541OC. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

37. Mättö J, Asikainen S, Väisänen ML, Von Troil-Lindén B, Könönen E, Saarela M, et al. Beta-lactamase production in Prevotella intermedia,Prevotellanigrescens, andPrevotellapallens genotypes and in vitro susceptibilities to selected antimicrobial agents. Antimicrob Agents Chemother. 1999;43:2383–2388. doi:10.1128/AAC.43.10.2383. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

38. Choi EY, Jin JY, Choi JI, Choi IS, Kim SJ. Effect ofazithromycinonPrevotellaintermedia lipopolysaccharide-induced production of interleukin-6 in murine macrophages. Eur J Pharmacol. 2014;729:10–16. doi:10.1016/j.ejphar.2014.02.008. [PubMed] [CrossRef] [Google Scholar]

39. Rodvold KA, Gotfried MH, Danziger LH, Servi RJ. Intrapulmonary steady-state concentrations of clarithromycin andazithromycinin healthy adult volunteers. Antimicrob Agents Chemother. 1997;41:1399–1402. doi:10.1128/AAC.41.6.1399. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

40. Guo D, Cai Y, Chai D, Liang B, Bai N, Wang R. The cardiotoxicity of macrolides: a systematic review. Pharmazie. 2010;65:631–640. [PubMed] [Google Scholar]

41. Polasek TM, Miners JO. Quantitative prediction of macrolide drug-drug interaction potential from in vitro studies using testosterone as the human cytochrome P4503A substrate. Eur J Clin Pharmacol. 2006;62:203–208. doi:10.1007/s00228-005-0091-x. [PubMed] [CrossRef] [Google Scholar]

42. Cook JA, Randinitis EJ, Bramson CR, Wesche DL. Lack of a pharmaco*kinetic interaction between azithromycin and chloroquine. Am J Trop Med Hyg. 2006;74:407–412. doi:10.4269/ajtmh.2006.74.407. [PubMed] [CrossRef] [Google Scholar]

43. Arabi YM, Deeb AM, Al-Hameed F, Mandourah Y, Almekhlafi GA, Sindi AA, et al. Macrolides in critically ill patients with Middle East Respiratory Syndrome. Int J Infect Dis. 2019;81:184–190. doi:10.1016/j.ijid.2019.01.041. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

44. Rosenberg ES, Dufort EM, Udo T, Wilberschied LA, Kumar J, Tesoriero J, et al. Association of treatment with hydroxychloroquine or azithromycin with in-hospital mortality in patients withCOVID-19in New York State. JAMA. 2020 doi:10.1001/jama.2020.8630. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

45. Mercuro NJ, Yen CF, Shim DJ, Maher TR, McCoy CM, Zimetbaum PJ, et al. Risk of QT interval prolongation associated with use of hydroxychloroquine with or without concomitant azithromycin among hospitalized patients testing positive for coronavirus disease 2019 (COVID-19) JAMA Cardiol. 2020;1:e201834. doi:10.1001/jamacardio.2020.1834. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

Azithromycin for COVID-19: More Than Just an Antimicrobial? (2024)

References

Top Articles
Latest Posts
Article information

Author: Terrell Hackett

Last Updated:

Views: 6143

Rating: 4.1 / 5 (52 voted)

Reviews: 91% of readers found this page helpful

Author information

Name: Terrell Hackett

Birthday: 1992-03-17

Address: Suite 453 459 Gibson Squares, East Adriane, AK 71925-5692

Phone: +21811810803470

Job: Chief Representative

Hobby: Board games, Rock climbing, Ghost hunting, Origami, Kabaddi, Mushroom hunting, Gaming

Introduction: My name is Terrell Hackett, I am a gleaming, brainy, courageous, helpful, healthy, cooperative, graceful person who loves writing and wants to share my knowledge and understanding with you.